|簡體中文

比思論壇

 找回密碼
 按這成為會員
搜索



查看: 519|回復: 0
打印 上一主題 下一主題

比传统机器学习算法快千倍

[複製鏈接]

3396

主題

1

好友

1萬

積分

教授

Rank: 8Rank: 8

  • TA的每日心情
    奮斗
    2024-5-26 10:37
  • 簽到天數: 451 天

    [LV.9]以壇為家II

    推廣值
    0
    貢獻值
    25
    金錢
    12
    威望
    16771
    主題
    3396
    跳轉到指定樓層
    樓主
    發表於 2022-10-13 20:28:48 |只看該作者 |倒序瀏覽

    英国牛津大学材料系研究人员联合埃克塞特大学和明斯特大学的同事开发了一种片上光学处理器,能检测数据集中的相似性,速度比在电子处理器上运行的传统机器学习算法快1000倍。发表在《光学》杂志上的这项新研究的灵感来自诺贝尔奖获得者伊万·巴甫洛夫对经典条件反射的发现。

    巴甫洛夫在实验中发现,如果在喂食过程中提供另一种刺激,例如铃铛或节拍器的声音,使狗将这两种体验联系起来,那它只听到声音就会流口水。两个不相关的事件配对在一起的重复关联可产生学习反应,也就是条件反射。

    大多数AI系统中使用的神经网络在学习过程中通常需要大量数据示例,比如训练模型可靠地识别出猫,可能需要多达10000张猫/非猫图像,造成计算和处理成本居高不下。

    关联单子学习元素(AMLE)不是依靠神经网络青睐的反向传播来“微调”结果,而是使用一种记忆材料来学习模式,将数据集中的相似特征关联在一起,以模仿巴甫洛夫在案例中观察到的条件反射的“比赛”。

    在测试中,仅用5对图像训练后,AMLE就可正确识别猫/非猫图像。

    与传统电子芯片相比,新型光学芯片具有相当可观的性能,这归因于设计上的两个关键差异:一种独特的网络架构,将联想学习作为构建块,而不是使用神经元和神经网络;使用“波分复用”在单个通道上发送不同波长的多个光信号,以提高计算速度。

    该设备自然地捕捉数据集中的相似性,同时使用光并行以提高整体计算速度,这远远超过了传统电子芯片的能力。

    研究人员表示,联想学习方法可作为神经网络的补充,而不是取代它们。对于不需要对数据集中高度复杂的特征进行大量分析的问题,它更有效。许多学习任务都是基于数量的,复杂程度并不高。在这些情况下,联想学习可更快地完成任务,并且计算成本更低。




    您需要登錄後才可以回帖 登錄 | 按這成為會員

    重要聲明:本論壇是以即時上載留言的方式運作,比思論壇對所有留言的真實性、完整性及立場等,不負任何法律責任。而一切留言之言論只代表留言者個人意見,並非本網站之立場,讀者及用戶不應信賴內容,並應自行判斷內容之真實性。於有關情形下,讀者及用戶應尋求專業意見(如涉及醫療、法律或投資等問題)。 由於本論壇受到「即時上載留言」運作方式所規限,故不能完全監察所有留言,若讀者及用戶發現有留言出現問題,請聯絡我們比思論壇有權刪除任何留言及拒絕任何人士上載留言 (刪除前或不會作事先警告及通知 ),同時亦有不刪除留言的權利,如有任何爭議,管理員擁有最終的詮釋權。用戶切勿撰寫粗言穢語、誹謗、渲染色情暴力或人身攻擊的言論,敬請自律。本網站保留一切法律權利。

    手機版| 廣告聯繫

    GMT+8, 2024-12-21 18:47 , Processed in 1.017957 second(s), 24 queries , Gzip On.

    Powered by Discuz! X2.5

    © 2001-2012 Comsenz Inc.

    回頂部